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Abstract
We report a calculation of the ground state binding energies of the on- and
off-axis neutral, D0, and negatively charged, D−, donors in an oblate lens-
shaped InAlAs/GaAlAs quantum dot in the presence of a uniform magnetic
field applied parallel to the dot axis. The calculations have been performed by
using the adiabatic approximation for the electron, a Bastard-type trial function
for the D0, and the Hylleraas-type trial function for the D− ion. Novel curves
and contour plots for the energies of donors confined in a quantum lens as
functions of the distance from the axis for several dot heights and magnetic
field strengths are presented. We show that under strong magnetic field the
on-axis D− ion binding energy becomes larger than the corresponding value
of the D0 located in the peripheral region close to the barrier, making possible
the formation of on-axis D− centres in equilibrium via electron transfer from
the peripheral donor to the on-axis D0.

1. Introduction

A negatively charged donor, D−, ion appears when a neutral donor, D0, in the quantum well
(QW) traps a second electron released into well by a barrier neutral donor [1]. The electron
transferring between two neutral donors becomes possible because of the fact that the D−
ions located inside the well are more strongly bound than in bulk; meanwhile, the neutral
donors D0 located in the barrier close to the well are more weakly bound than in bulk. The
stronger the confinement the larger is the ratio of the binding energy of the negatively charged
well donor to the binding energy of the barrier neutral donors located close to the well and
the more probable is the formation of D− ions inside the well by means of trapping of the
electron released into well by the barrier donor. This mechanism of formation of D− ions in
QWs has previously been analysed by Larsen [2]. One can expect that this process should be
more pronounced in quantum dots (QDs), where the effect of the confinement is stronger than
in QWs.
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Recently, the Stranski–Krastanov growth technique [3] has been used to manufacture self-
assembled quantum dots (SAQDs) with controlled thickness and relatively sharp interfaces
whose shapes look alike, of pyramids, cones, discs, lenses or rings. Structural studies have
shown that the SAQDs commonly are oblate because their heights are much smaller than
the base sizes [3]. Spectra of the particles confined in QDs are strongly dependent on the
structural properties such as size and morphology. Therefore, the capability to design and
manufacture new opto-electronic devices is inextricably bound up with the knowledge of the
energy spectrum of a few particles [4]. In consequence, reliable methods to calculate the
electronic structure of few particle systems in QDs are required. This is the reason why
many studies of QDs containing an exciton or two electrons have been fulfilled in the last
two decades. Spectra of these systems have been analysed by using different methods, such
as variational [5], diagonalization [6], finite elements [7], perturbation theory [8] and the
adiabatic approximation [9].

Ground state binding energies of the on-centre D0 and D− confined in a spherical
quantum dot (SQD) have been calculated in the papers [10] by using the series expansion
and variational method, respectively. It has been shown that the ratio of the on-centre D−
binding energy to the on-centre D0 binding energy in an SQD is essentially larger than in other
types of heterostructures and it can reach the proportion 1:3. Off-centre D0 binding energies
in an SQD have been calculated in the paper [11] by using the diagonalization method.
The energy levels of the ground and excited states of both the spin-singlet and spin-triplet
configurations for the on-centre D− confined in an SQD have been calculated by variational
means and the conditions of binding for the excited states have been determined as functions
of the potential-well depth and quantum-dot radius [12]. Recently, we have proposed a fractal
dimension scheme [13] for calculating the ground state energies of the off-centre donors D0

and D− which gives results in excellent concordance with those obtained previously for a QW,
cylindrical quantum wire and SQD by means of the Monte Carlo [14], diagonalization [11]
and series expansion [10] methods.

A comprehensive analysis of the influence of the dot size and shape on the off-axis D0

and D− donor binding energies in SAQDs and the possibility of the electron transferring
from the peripheral donor to the on-axis one has been done more recently [15] by using the
fractal dimension procedure. On the other hand, the formation of D− ions in QDs could be
additionally reinforced under strong magnetic field, which reduces the separation between
an electron and the donor located close to the axis, whereas this separation increases for the
peripheral donor. In this paper we explore the conditions more relevant for the formation of
the D− ion in SAQDs in the presence of magnetic field. To this end, we extend the fractal-
dimensional scheme [13] in the case of the oblate QDs with axial symmetry for calculating
the ground state binding energies of D0 and D− in lens-shaped InAlAs–AlGaAs SAQDs with
large base radius–height aspect ratio. The last condition permits us to take advantage of the
adiabatic approximation, in order to separate the one-particle rapid motion along the z-axis
from the slower lateral motion in the x–y plane and thus to make possible the application of
the fractal-dimensional scheme.

This paper is organized as follows. In the next section we consider the theoretical model
of the D0 and D− confinement in a lens-shaped SAQD. In section 3 we show how the wave
equation for the electron in the SAQD can be reduced to a two-dimensional central force
problem by using the adiabatic approximation. A short description of the fractal-dimensional
scheme for calculating the binding energies of donors confined in lens-shaped SAQDs is given
in section 4. The results of the D0 and D− energies as functions of the donor position, QD
height and magnetic field strength and the discussion of the effect of the magnetic field on the
formation of the D− in SAQDs are presented in section 5. A summary is provided in section 6.
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Figure 1. Schematic picture of a lens-shaped self-assembled quantum dot including a wetting
layer as part of the QD.

The numerical procedures used for solving the two-dimensional central force problem and for
calculating the binding energies are given in appendices A and B, respectively.

2. Model

We consider a lens-shaped QD of height d0 modelled as a part of an ellipsoid with circular
base of radius R0 on a wetting layer of thickness db. The structure’s thickness, d , dependence
on the distance from the axis, ρ, is defined by the function

d(ρ) =
{

db; ρ > R0

db + d0

√
1 − (ρ/R0)2; ρ < R0.

(1)

A schematic picture of a lens-shaped QD given by these relations is shown in figure 1,
where the parameters ξρ and ξz give the distances from the donor to the axis and the bottom
of the wetting layer, respectively. In what follows we consider the wetting layer as a part of
the QD. The confining potential V (ρ, z) inside the QD and the wetting layer (0 < z < d(ρ))

is equal to zero and it is equal to V0 in the barriers (z < 0 or z > d(ρ)).
Neglecting the differences between the material parameters, the dielectric constant ε

and the electron effective mass m∗ of the well and those of the barriers, the dimensionless
Hamiltonian of D− ion S states in a QD in the presence of a uniform magnetic field, B = B ẑ
can be written as

Ĥ (r1, r2, Z1, Z2) = Ĥ0(r1, Z1) + Ĥ0(r2, Z2) + 2Z1 Z2/|r1 − r2|; (2a)

Ĥ0(ri , Z) = −∇2
i + V (ρi , zi ) + γ 2ρ2

i /4 − 2Z/|ri − ξ |; i = 1, 2; (2b)

where ξ = (ξρ, ξz) and ri = (ρi , zi ) designate the 3D position vectors of the ion and electrons
1 and 2, respectively. The effective Bohr radius a∗

0 = εh̄2/m∗e2, the effective Rydberg
Ry∗ = e2/2a∗

0ε and the first Landau level expressed in R∗
y , γ = eh̄ B/2m∗cRy∗, have been

taken as units of length, energy and the dimensionless magnetic field strength, respectively.
One can see that the Hamiltonians (2a) and (2b) describe different situations for different sets
of the parameters Z , Z1 and Z2. In particular, Z in the one-particle Hamiltonian (2b) is equal
to zero for the free electron and one for the donor, the set Z1 = 1 and Z2 = 1 corresponds
in (2a) to D− whereas the set Z1 = 1 and Z2 = 0 in the Hamiltonian (2a) may be related
to a hypothetical model of the non-interacting neutral donor D0 and electron, both confined
within the QD.

The ground state wavefunctions of a free electron, f0(r), a neutral donor, �D0(r), a
negatively charged donor, �D−(r1, r2), and their corresponding lowest energies E0, E(D0)
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and E(D−) in a QD, can be found as solutions of the respective eigenvalue problems:

Ĥ0(r, Z = 0) f0(r) = E0 f0(r) (3a)

Ĥ0(r, Z = 1)�D0(r) = E(D0)�D0(r) (3b)

Ĥ (r1, r2, Z1 = 1, Z2 = 1)�D−(r1, r2) = E(D−)�D−(r1, r2). (3c)

In order to analyse the problem of existence of bound states for neutral and negative donors
in the QD their binding energies Eb(D0) and Eb(D−) have been defined in [12] as minimum
energies required to liberate one electron from the bound state of the donors located in a single
QD and transfer it into the barrier region. Once the donor ground state energies E(D0) and
E(D−) are calculated, the binding energies according to this definition are given by

Eb(D0) = V0 − E(D0); Eb(D−) = V0 + E(D0) − E(D−). (4a)

Another definition of the binding energies as a difference between the eigenvalues of the
Hamiltonians Ĥ0(r, Z = 0), Ĥ0(r, Z = 1) for the D0 and Ĥ (r1, r2, Z1 = 1, Z2 =
0), Ĥ(r1, r2, Z1 = 1, Z2 = 1) for D− was used in [10, 11]. Since these differences can
be considered as correlation energies related to the Coulomb interactions responsible for the
trapping of the electron, in what follows we denote them as Ec(D0) and Ec(D−) for the neutral
and negatively charged donors, respectively:

Ec(D
0) = E0 − E(D0); Ec(D

−) = E0 + E(D0) − E(D−). (4b)

Detailed discussion of the physical meaning of the binding energy (4a) and the correlation
energy (4b) was given in [12]. One can observe that the correlation energies given by
the relations (4b) contain the refined information only about intrinsic properties of donors
confined in the QD whereas the binding energies (4a) give joint information about properties
of both the donor and the surroundings. To study a process of donor ionization related to
transferring of the electron in the conduction band one can calculate Eb(D0) and Eb(D−),
whereas to describe a process of electron transfer between donors located within the same
QD it is preferable to use the correlation energies Ec(D0) and Ec(D−). In what follows we
present the results of calculation of both the binding and correlation energies.

3. Free electron ground state

Equation (3a) for a free electron in a QD does not completely separate and no exact solutions
have been found. It is therefore of interest to consider the case d0 � R0 corresponding
to a strongly oblate lens, which we call the adiabatic limit for the following reason. One
can rescale the coordinates in the wave equation (3a) in such a way that displacements in
z and radial directions become of the same order by using the substitutions z = d0z̃ and
ρ = R0ρ̃. In these rescaled coordinates the electron motion is mainly restricted within the
region 0 < ρ̃, z̃ < 1 and it is described by the wave equation

− 1

d2
0

d2 f0(ρ̃, z̃)

dz̃2 − 1

R2
0

∇2
ρ̃ f0(ρ̃, z̃) + Ṽ (ρ̃, z̃) f0(ρ̃, z̃) = E0 f0(ρ̃, z̃);

Ṽ (ρ̃, z̃) = V (ρ̃, z̃) + γ 2 R2
0 ρ̃2

4
.

(5)

Equation (5) may be regarded as the Schrödinger equation describing two hypothetical
particles, the light particle of mass d2

0 and the heavy particle of mass R2
0, interacting through

the potential Ṽ (ρ̃, z̃). Since one of these masses is much larger than the other, we follow
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Figure 2. Normalized in-plane confining potential curves for QDs with different heights.

the well known adiabatic procedure of first solving the equation for the light particle motion
along the z-axis:

−d2 fz(z, ρ)

dz2
+ V (ρ, z) fz(z, ρ) = Ez(ρ) fz(z, ρ), (6)

where ρ is treated as a parameter (cf electronic motion for fixed nuclear position in the
molecular problem), and then for the heavy particle in-plane motion

−∇2
ρ fρ(ρ) +

[
Ez(ρ) + γ 2ρ2

4

]
fρ(ρ) = E0 fρ(ρ). (7)

In equations (6) and (7) we return again to the initial coordinates. The dependence of the
eigenvalue Ez on the distance from the axis, ρ, represents the potential curve for a two-
dimensional central force given by equation (7).

Once the functions fz(z, ρ) and fρ(ρ) are found, the function f0(r) can be obtained
through

f0(r) = fz(z, ρ) fρ(ρ). (8)

Numerical procedures for calculating the free electron ground state energy in QD,
Ez(ρ), E0, fz(z, ρ) and fρ(ρ) are given in appendix A.

In figure 2 we display the potential curves, Ez(ρ), for the in-plane electron motion in
QDs with the base radius R0 = 25 nm, the wetting layer thickness db = 2 nm and four
different values of d0: 2, 4, 6 and 8 nm. One can see that the barrier height for the in-plane
motion decreases due to the confinement in the z-direction approximately by 48% as the QD
thickness is equal to 6 nm, 56% for d0 = 4 nm and 70% when d0 = 2 nm. Generally, the
smaller the QD height the larger is the decrease of the barrier height.

4. Neutral and negatively charged donor ground states

To find the ground state wavefunctions �D0(r) and �D−(r1, r2) corresponding to the lowest
energies E(D0) and E(D−), we use the Bastard-type [16] trial functions:

�D0(r) = f0(r)�D0(|r − ξ |); �D−(r1, r2) = f0(r1) f0(r2)�D−(|r1 − ξ |, |r2 − ξ |, r12)

(9)
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where the envelope functions, �D0 and �D− , describe the alterations of the one- and two-
particle wavefunctions, respectively, caused by the Coulomb interactions.

As has been demonstrated in [13], the trial functions (9) satisfy the Schrödinger
variational principle, if the envelope functions �D0 and �D− are solutions of wave equations
for the hydrogen atom H and negatively charged ion H−, respectively, with modified
Laplacian in which the radial part of the Jacobian r2 is replaced by the expression J (r) =
r2

∫
f 2
0 (r′)δ(|r′| − r) dr′. Once the free electron wavefunction (8) is defined, the dependence

of the Jacobian on r may then be found in a straightforward way by means of a numerical
estimation of this integral, which for the wavefunction (8) in cylindrical coordinates can be
found as [13]

J (r) = r
∫ 2π

0
dϕ

∫ r

−r
dz f 2

z (z + ξz, |ρ + ξρ |) f 2
ρ (|ρ + ξρ |);

|ρ + ξρ | =
√

r2 − z2 + ξ2
ρ + 2ξρ

√
r2 − z2 cos ϕ.

(10)

The function �D0(r) is the solution of the following wave equation [13]:

− 1

J (r)

d

dr

[
J (r)

d�D0(r)

dr

]
− 2

r
�D0(r) = [E(D0) − E0]�D0(r). (11)

In order to estimate E(D−) we use for �D− the following simple three-parametric
Hylleraas trial function [17]:

�D−(r1, r2, r12) =
[
1 + β(r1 − r2)

2 + ηr12

]
exp(−α(r1 + r2)), (12)

which permits us to find the variational energy E(D−, α, β, η) as a function of three
parameters α, β and η. The estimated upper limit of the negatively charged donor then can be
found as

E(D−) = min
α,β,η∈(0,1)

E(D−, α, β, η). (13)

Some details of our numerical procedure used for calculating E(D0) and E(D−) are given in
appendix B.

5. Results and discussion

In what follows we present the results of calculation for heterostructures of
In0.55Al0.45As/Ga0.65Al0.35As where the values of a∗

0 and Ry∗ are equal to 8.86 nm and
6.40 meV, respectively, and the barrier height V0 ≈ 40 Ry∗ [18]. It should be noted that
the heterostructures of GaAs/Ga0.7Al0.3As have a set of parameters close to these values
and therefore the results presented below are also applicable with a slight variation to these
heterostructures. The donor position in a QD with axial symmetry given by the vector ξ is
described by means of two parameters, ξρ , the distance from the axis, and ξz , the distance
from the wetting layer bottom.

We calculate the correlation and the binding energies of the D0 and D− centres located
in different parts of QDs with the base radius 25 nm, the wetting layer thickness 2 nm
and different heights, d0, 2, 4, 6 and 8 nm, with and without external magnetic field.
The calculation results are presented in figures 3–6. First, we have performed a numerical
calculation of the correlation and the binding energies of donors with different distances from
the axis, ξρ , and located on the edge of the wetting layer, ξz = db. Donor ground state
correlation energies as a function of ξρ in QDs with different heights are shown in figures 3(a)
and (b). Similar dependences for the binding energies are shown in the insets. The decrease
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Figure 3. The correlation energy of D0 (a) and D− (b) as a function of the distance from the axis
of the QDs with different heights. In the inset the donor binding energy is plotted. The same curve
conventions are used as in the main figure.

of the correlation and the binding energies as the donor is removed from the axis can be easily
observed. It is due to the fact that the motion of the electron is mainly restricted in the region
close to the axis, independently of the donor position. Therefore, as the donor is removed
from the axis, the mean distance between the electrons and ion increases while the binding
energy decreases. It is also seen from figures 3(a) and (b) that the orders of the curves for
different QD heights in the main figure and in the inset are inverted. The correlation energies
of both neutral and negative donors in the main figures decrease as the height of the quantum
dot increases, whereas curves with larger binding energies in the insets correspond to donors
located in QDs with larger heights. As the QD height reduces the donor binding energies
decrease due to the fact that all energy levels, of the electron and the neutral and negative
donors, climb up toward the conduction band bottom. On the other hand, this rise of the
energy levels is accompanied by the enhancement of the distances between them determined
by the Coulomb correlation energy.

In figure 4 we present similar dependences of the donor correlation and binding energies
in a QD with height d0 = 4 nm, base radius R0 = 25 nm and wetting layer thickness
db = 2 nm for several magnetic field strengths. It is seen from the main figures 4(a) and (b)
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Figure 4. The correlation energy of D0 (a) and D− (b) as a function of the distance from the axis
of QDs under different magnetic fields. In the inset the donor binding energy is plotted. The same
curve conventions are used as in the main figure.

that under magnetic field the correlation energies of donors located close to the axis increase
while the correlation energies of donors located far from the axis decrease. In consequence, all
curves cross at the same point, where the correlation energy remains unchanged. The external
magnetic field provides an additional confinement which restricts the electron motion in the
radial direction, making more probable their location close to the axis. Due to such variation
of the charge distribution under magnetic field, the separation between electrons and ions for
donors located close to the axis decreases, providing the increase of the Coulomb correlation
energy, and inversely this separation increases when donors are situated far from the axis.

In order to achieve a better understanding of the dimensional characteristics of the D0

and D− centres in QD, we present in figure 5 the ratio σ = Ec(D−)/Ec(D0) as a function of
the distance of the donor from the axis for different QD heights (a) and for different magnetic
field strengths (b).

For the unconfined 3D and 2D cases, the ratio σ is respectively equal to 0.0506 and 0.086
in the present work (by using the Hylleraas three-parameter trial function) and 0.056 and
0.128 in the paper of Louie and Pang [14] (by using the diffusion Monte Carlo method).
As established previously the limit values of σ for on-centre donors in an SQD [10, 13]
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Figure 5. Ratio σ = Ec(D−)/Ec(D0) as a function of the distance of the donor from the axis of
the dot for different QD heights (a) and for different magnetic field strengths (b).

and a cylindrical quantum well-wire [13] with the barrier height 40Ry∗ are about 0.3 and
0.2, respectively. Consequently, one can expect that typical values of σ for 0D, 1D and 2D
heterostructures are respectively about 0.3, 0.2 and 0.1. Indeed, as seen from figure 5, the limit
value, σ ∼= 0.3, for an SQD is also valid for donors located close to the axis of the lens-shaped
QD independently of the presence of the magnetic field. When the donor is removed far from
the axis σ is reduced and tends monotonically toward the 1D limit, 0.2, demonstrating that
both D0 and D− configurations adopt a nearly linear geometrical shape with the electrons
located mainly close to the axis and the ion displaced in the peripheral region. As seen from
figure 5(b), under strong magnetic field the σ 1D limit is achieved more rapidly with removing
the donor position in the peripheral region. This is due to the fact that under magnetic field
the electron motion becomes more restricted in the vicinity of the axis and with the donor
displacement from the axis the electron orbit becomes more elongated.

In order to facilitate the interpretation of the calculation results for off-axis D0 and D−
centres, we show the contour plots in figure 6, which correspond to the level lines of the
Ec(D0) and Ec(D−) of donors with different positions along a cross section through the axis
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Figure 6. Contour plots of the correlation energies of D0 and D− in a plane through the axis of
symmetry of the quantum lens with base radius 25 nm, height 4 nm and wetting layer of thickness
2 nm for γ = 0 (figures 6(a) and (b)) and γ = 3 (figures 6(c) and (d)).

of symmetry of the lens for γ = 0 (figures 6(a) and (b)) and γ = 3 (figures 6(c) and (d)). The
shadowed parts indicate the cross section of the QD with the base radius 25 nm, height 4 nm
and wetting layer thickness 2 nm. The numbers on the contour plot lines indicate the donor
correlation energies in Ry∗. Due to the squeezing by the applied magnetic field the particles
become more centred in the middle of the dot and the level lines in the lower contour plots
(figures 6(c) and (d)) for γ = 3 become more compressed along the ρ direction than those in
the upper contour plots (figures 6(a) and (b)) for γ = 0. It is also seen that the behaviour of the
level lines for the D0 and D− centres, in general, is similar, and in both cases the correlation
energies under magnetic field increase for donor locations close to the axis and they decrease
for peripheral locations.

Comparing the contour plots for the D0 and D− centres presented in figures 6(a) and (b)
one can see that the correlation energies of the D− located close to the axis are larger than
the correlation energies of the peripheral D0, i.e. the peripheral D0 are more weakly bound
than the D− ions located close to the axis. For example, the on-axis D− correlation energy
in figure 6(b) is about 1.11 Ry*, whereas the correlation energies of the peripheral D0 in
figure 6(a) distant from the axis more than 20 nm are less than 1.05 Ry*. This means that
the transferring of the electron from the peripheral D0 to the D0 located close to the axis is
energetically favourable. In consequence, a significant population of D− ions can appear in
equilibrium close to the axis. Additionally, one can observe in figures 6(c) and (d) that in
the presence of the magnetic field the difference between the correlation energies of the D−
located close to the axis and those of the peripheral D0 increases, and therefore the process of
the formation of D− ions under strong magnetic field becomes significantly reinforced.

The probability that a neutral on-axis donor, D0
on, will convert to a D−

on ion, trapping the
electron released from the peripheral donor, D0

off, according to the charge exchange reaction



Effect of magnetic field on the formation of D− ions in lens-shape quantum dots 1015

Figure 7. Contour plots of the energies �E required for the charge exchange between the on- and
off-axis donors for different off-axis donor positions in a plane through the axis of symmetry of
the lens without (a) and with (b) magnetic field. The dark-shadowed parts of the figures indicate
the positions of the off-axis donors for which the charge exchange with the on-axis donor is
exothermic.

D0
on + D0

off → D−
on + D+

off, is significant only if the energy �E , required to remove the
electron from the off-axis donor and place it on the on-axis donor, is negative, i.e. this
reaction is exothermic. One can estimate the value of �E as the difference between the
energy required in order to separate the electron from the peripheral donor, Ec(D0

off), and the
energies gained due to the correlation of the electron by the on-axis donor, Ec(D−

on), and due
to the electrostatic attraction between two ions formed in this reaction, Ua:

�E = Ec(D0
off) − Ec(D−

on) − Ua. (14)

The energies Ec(D0
off) and �E depend strongly on the off-axis donor position. Therefore,

in order to find the donor positions for which the charge exchange with the on-axis donor is
exothermic, we present in figure 7 the contour plots of the energies �E required to remove the
electron to the on-axis donor, located on the middle of the lens axis (ξz = 0, ξρ = db + d0/2),
from D0

off with different positions along a cross section in a plane through the axis of symmetry
of the lens, for γ = 0 (figure 7(a)) and γ = 3 (figure 7(b)). The dark-shadowed parts of the
figures indicate the positions of the neutral donors for which the energies �E are negative
and the reaction of the formation of the on-axis D− centre is exothermic.

We estimate Ua as the interaction energy between the point charge +e, located at the
off-axis donor position, and the charge −e, homogeneously distributed within a sphere
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of the radius 1/α (α is the variational parameter of the Hylleraas trial function given by
equation (12)) and centred at on-axis donor location (ξρ = 0, ξz = db + d0/2). It is seen from
the contour plots presented in figure 7 that the energy required for the formation of the D−

on
falls off rapidly as the D0

off is removed from the axis turning into negative (dark shadowed
parts of the contour plots) as D0

off is far from the on-axis donor more than 18 nm without
magnetic field and 13 nm as γ = 3. Comparing the contour plots in figures 7(a) and (b) it is
easy to observe that the increase of the magnetic field provides an expansion of the region with
peripheral donor positions for which �E is negative, reinforcing the process of the formation
of on-axis D− ion.

6. Conclusions

In order to study the positional and the magnetic field dependences of the ground state
correlation and binding energies of the neutral and negatively charged donors in oblate
lens-shaped quantum dots, a numerical calculation has been performed by using the fractal
dimension method [13]. It is found that the enhancement of the neutral and negative donor
correlation energies for on-axis donors as a result of the confinement is accompanied by
a significant increment of the ratio σ = Ec(D−)/Ec(D0), very similar to one established
previously for an SQD. We have calculated the σ for different donor positions within the
lens-shaped QD in the presence of the magnetic field oriented along the axis of symmetry.
It is pointed out that in the zero-magnetic-field case σ decreases from a typical value for
zero-dimensional structures of about 0.3 up to a typical value for one-dimensional structures
of about 0.2 as the donors are removed from the axis to the barrier region. We ascribe this
variation of σ to the change of the electron distribution density configuration from nearly
spherical around the donor position for the on-axis donor up to linearly elongated for the
barrier donor. This results in the correlation energy of the on-axis D− being larger than the
correlation energies of the D0 located far from the axis, and the formation of on-axis D− ions
by means of charge exchange between these two donors becomes very probable. We found
that external magnetic field increases σ for the on-axis donors and decreases its value for the
donors located far from the axis, making more probable the process of formation of on-axis
D− ions.

Acknowledgments

This work was financed by the Industrial University of Santander (UIS) through the Dirección
General de Investigaciones (DIF Ciencias, Cod. 5124) and the Excellence Centre of Novel
Materials—ECNM, under contract No 043-2005 and Cod. No 1102-05-16923 subscribed
with Colciencias. JHM wishes to thank the Universidad Nacional—Sede Medell ı́n for
permission to study at the UIS.

Appendix A. Numerical procedure for calculating the free electron ground state energy
and wavefunction in QL

The function fz(z, ρ) and the associated lowest energy Ez(ρ) can be found exactly as the
well known analytical solution of the one-particle wave equation (6) for a quantum well of
width d(ρ) with barrier height V0 considering ρ as a fixed parameter. Once fz(z, ρ) and
Ez(ρ) are found, the ground state wavefunction fρ(ρ) may then be obtained numerically in
a straightforward way as a solution of the two-dimensional central force problem with field



Effect of magnetic field on the formation of D− ions in lens-shape quantum dots 1017

potential Ez(ρ). To solve equation (7) for S states, it can be written as

− f ′′
ρ (ρ) − 1

ρ
f ′
ρ(ρ) +

[
Ez(ρ) + γ 2ρ2

4

]
fρ(ρ) = E0 fρ(ρ). (A.1)

One should take into account that the potential Ez(ρ) in the region ρ � R0 is constant
and equal to V0, and therefore the solution of equation (A.1) outside the QD can be found
analytically:

f0(ρ) = C exp

(
−γρ2

4

)
U

(
1

2
+ V0 − E0

2γ
, 1,

γρ2

2

)
; R0 � ρ < ∞ (A.2)

where U(a, 1, x) is the general form of the confluent hypergeometric function [17] which
remains finite, as x → ∞. Within the QD, equation (7) by using substitution g(ρ) =
f ′
0(ρ)/ f0(ρ) is reduced to the Cauchy problem for the Riccati equation:

g′(ρ) + g2(ρ) + g(ρ)/ρ +
[

E0 − Ez(ρ) − γ 2ρ2/4
]

= 0; 0 < ρ < R0; g(0) = 0,

(A.3)

where E0 is considered as a fixed parameter. One can define a function g(R0, E0) as the
solution of problem (A.3) at the point ρ = R0, which can be found for each value of E0
by using for example the Runge–Kutta method. Then sewing together this function with the
solution (A.3) at the point ρ = R0 one can obtain the following transcendental equation for
the ground state energy E0:

g(R0, E0) = −γ R0

2
− γ R0

(
1

2
+ V0 − E0

2γ

)

× U

(
3

2
+ V0 − E0

2γ
, 2,

γ R2
0

2

) /
U

(
1

2
+ V0 − E0

2γ
, 1,

γ R2
0

2

)
, (A.4)

where we have used the relation [19] U ′(a, c; x) = −aU(a + 1, c + 1; x).

Appendix B. Numerical procedure for calculating the ground state energies and the
wavefunctions of the neutral and negatively charged donors in QL

To solve equation (11) let us to rewrite it in the following form:

−�′′
D0(r) − w(r)�′

D0(r) − 2

r
�D0(r) = [E(D0) − E0]�D0(r);

w(r) =
[

2

r
+ (ln P(r))′

] (B.1)

where we use the notation J (r) = r2 P(r) taking into account that the behaviour of the
Jacobian (10) for small values of r is almost parabolic. As the solution of equation (B.1) at
the point r = 0 should be an analytical function, one can derive the following initial condition:
�′

D0(0)/�D0(0) = −1.
By using the substitution tan ϑ(r) = �′

D0(r)/�D0(r) one can reduce (B.1) to the Cauchy
problem for the first order differential equation:

ϑ ′(r) + sin2 ϑ(r) + w(r) sin ϑ(r) cos ϑ(r) +
[

E(D0) − E0 + 2

r

]
cos2 ϑ(r) = 0;

ϑ(0) = −π/4.

(B.2)
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Here the function w(r) and the value E0 are known from the previously solved free
electron problem and the donor energy E(D0) can be considered as a fixed parameter. For
each value of this parameter the Cauchy problem can be solved numerically by using, for
example, the Runge–Kutta method and the solution ϑ(r, E(D0)) at any point r can be found.
From the physical significance of the envelope function �D0(r) it should tend to zero for
large electron–ion separations r . One can also see from definition (9) that the behaviour of
the envelope for large separation does not essentially affect the donor ground state function
because of the presence of the predominant factor f0(r), which exponentially decreases for
large separations r . For this reason one can choose a sufficiently large limit value for electron–
ion separations Rmax where we can put �D0(Rmax) = 0. This condition provides the following
transcendental equation with respect to unknown donor energy E(D0):

ϑ(Rmax, E(D0)) = −π/2 (B.3)

where ϑ(Rmax, E(D0)) is the solution of the Cauchy problem (B.2) at the point r = Rmax.
To find the variational energy E(D−, α, β, η) as a function of three parameters α, β and

η one can use the well known procedure of calculation of the multiple integrals in coordinates
of Hylleraas [17] in an isotropic three-dimensional space where the radial part of the Jacobian
r2 is substituted by the function r2 P(r). One can then obtain the following explicit expression
for the variational energy as a function of the parameters α, β and η:

E(D−, α, β, η) = 2E0 + 2α2 +
∫ ∞

0 e−2αs ds
∫ s

0 P
( s+t

2 , ζ
)

P
( s−t

2 , ζ
)

R1(s, t) dt∫ ∞
0 e−2αs ds

∫ s
0 P

( s+t
2 , ζ

)
P

( s−t
2 , ζ

)
R0(s, t) dt

, (B.4)

R1(s, t) = 2(s − t)[(s2 − t2)(1 + βt2)2 + 4βηs2t2 + 2αηst2(1 + βt2)]
+ (s2 − t2){2sαη2t2 − 4s(1+βt2)2+(s2 − t2)[4β2t2 + 2η(1 + βt2)+ η2]}
− 2η

3
(s3 − t3)[4βt2 + 2s(4 + α)(1 + βt2)

− η(s2 − t2)] − η2s(s4 − t4)(α + 2)

R0(s, t) = (s2 − t2)

[
1

2
(s2 − t2)(1 + βt2)2 + 2η

3
(s3 − t3)(1 + βt2) + η2

4
(s4 − t4)

]
.

(B.5)
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